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MODIFIED GELFAND-TSETLIN PATTERNS 
LATTICE PERMUTATIONS, AND SKEW-TABL~AU 

BOLJYN0MlALS 

Angust, 29, 2002 

A modification of the wcll-l<nown Gclfand-Tsetlin pattcrns, which are one- 
to-onc with Young-Weyl standard l,nbleaux is introduced. These new attcrns 

ification can be used to  eriunierate lattice permutations. In particular, the 
coupling rule for angular momentum takes an elementary form in lerrns of 
these modified attterns. These interrelations will be presented, togetlier with 
a,n outline of 1, e construction of a class of polynomials that  generalizes the 
skcw Schur functions. 

are i n  one-to-one corrcspondencc with skew-hdhaux, and with a slig K 1 mod- 
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1 Intrsductian and Review of Combinatorial Concepts 

I t !  is wcll known h t  fiernistandtird Young-Wcyl t.t.ablea11 of shape X E Par,, 
wlierc Parn daiotm the set, of r ~ l l  partithns A = (A1 , X p l  , . . , A,,), A, 2 A2 2 
, , , 2 Xn > 0, having n parts count,ing 0 tm ti part, is bijecthc with tohe set 
of (301f~~nc~'l'sci,liii putt+crns a l  s~iape A. ~ ~ i e  purpose of this artic~c is to show 
how this rcsultf gor~erdizm to n bj eelion bclwecn semistmdard skew t8tibleau 
of shape X - 1.1 tmd skcw Gclf~ind-$sollin pcit.tcrns of shape X - p ,  st.riid.ures 
tliat are cicliried bclow. This rwilt ,  in f,urri, allows the generalizilbjon of the 
well lumwn Dx -polynorriials'-~ to slrcw DX~~'-polynornit~ls. An consequence 
of this generalizut,ion is t h t ,  thc [.race of the skew Dxl~-polynomials yields the 
skew Schur functions sxlP, just, tls the trace of the ordinary Dx-polynomials 
yields the ordinar Schur functions SA. We also formulate the concept of a 

tations and ~,~l~l~~ewoo~3-~ichardson numbers. Thc properties of Littlewood- 
ltichardson numbcrs lzre vcry important for the study of cornposi t,e holis- 
tic multiparticle qumtum systems t o  which the Dx-polyriornials and the 
Dx/P -polynomials linve applications through multiple Kronecker products of 
such polynomials and their reduction into irreducible forms. We do not address 
the latJter in this i~rticle, but instead review and set forth the combinatorial 
approaches to the subject. 

The interest, in formulating i ~ b l e a n  rewli,s in terms of Gelfand-Tsetlin pat- 
terns originates from the Wey15 group-subgroup significance of the conditions 
sssociat,ed directly with Gelfcznd-T~etlin~ patterns, and the subsequent use of 
such patterns in numerous physical appl~cations. We begin by a review of 
several well known results,7 
2.1 Semistan,da,rd Youmg- We91 Tableaux and Gelfand- Tsellin Patlerns 

Semistandard Young- Weyl tableau, (SSY W):  A partition X E Pa,rn is some- 
times called a shape.A Young-Weyl tableau is a shape X E Par, in which the 
integers 1,2, . . . , n are distributed among Ithe 1x1 = XI + . '  + An boxes, one in 
cach box, according to the rules: 

modified Gelfand- + sctlin pattern, and show their relation to lattice permu- 

'1 4 weakly increasing across each row 

J. strictly increasing down each column 

one integer/boxl 

Notations: 

Tx = set of all semistandard tableau of shape A, 
a = weight of semistandard tableau = (01, , , . , an), ai =number of i 's, 
TA(Q) = set of all semistandard tableau of shape X and weight a, 
Wx = set of all weights of semistandard tableaux of shape A, 
K(X, a )  3= multiplicity of a weight a E Wx. 

2 



The geometric placement of tliese partitions is intmded io  indicate ” belJween- 
ness. 

Notations: 

( 6 ~  = set of all GT patterns of shape X E Yarn, 

GA( a )  = set of all GT patiferns of weight Q , 
WA = set of all weights of GT patterns of shape A, 
K(X, a)  = multiplicity of a wcjght cy E WA. 

= (IA 14 - (111, * * 7 1x1 - 14), 

Xz integers 

The significant result is the bj’ect,ion between the set of semistandard 
tableaux of shape X and the set of d T patterns of shape X of the same weight, 

c--f 

as given by Lhe following rules: 

mapping rule: The shapes (partitions) in the GT pattern are obtained by 
sequential removal of integers from the semistandard tableau: 

X is the shape of the tableau; 
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I/ is the! shtipe of thc t d h s u  obtninatl by rcmoving d l  3’8; 

IL is thc shupc: of the t,ttblcnu obtuincd by removing all 2’s; 

an.iier:su rule: Thc scniistmdard t ~ h l c ? i ~ n  is obtained from the CY’  pattcrn by 
the rule 

insert 3’s in thc shape p; 
followed by 2’s in the new boxm contuined in shape 11 and not i n  shape p; 

followed by n’s in  the new boxes contained in shape X and not, in shape T .  

The rclst,ion between SSYW tableaux arid GT patterns of t17c same shape 
is illustriited for X = (6,5,3,0) by 

‘The bi’ection described a,bove exlmds, of course, to the full sets of semis- 
tandard .3 oung-Weyl 1,ableaux and Gclfand-Tsetlin patterns of shape X : 

Tx nrJF=loN GI. 

2 The Dx-Polynomial 

One of the significant applications of SSYW tables tx,or, equivalently, of GT 
patterns is their role as indexing sets or labels of a class oi polynomials that 
arise in many different contexts. These polynomials have been discussed in a 
number of a r t i ~ l e s . ~ ’ - ~ t ~  Some of their principal properties are recalled here for 
the purpose of showing how they recur in the context of skew GT and modified 
GT patterris in Sections 3 and 6.2 . 
2.1 Basic Orthogonal Ma,cluurin Polynomials 

We adopt the following notations and definitions: 
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The Maclauriri polynomials are orthogonal in the inner product ( , ) described 
in detail by L o ~ c k . ~  

( Z A ,  Z B )  = &(A,  B)A!. 

Basic Orthogon!al D x  - Polynomials 

We now define a class of invertible real linear transformations of the Z A  poly- 
nomials that preserve their homogeneity properties in the rows and columns 
of the variable matrix Z : 

The notations in this definition are: 

1. (2) is a Gelfand-Tsetlin GT pattern, and ('f) is an inverted GT pattern. 
We now write a GT pattern in the more detailed form 

. . .  
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4. M( A) is the invariant normalizing Factor defined by 

in which I l i r r ~ X  is the Weyl dimension rormula: 

The orthogonality and normaljzation of lhe Dx -polynomials are expressed by 

2.3 Com,ban,atorial Dejinition of the C- Coe,ficients 

eT = unit row vector of length n = (0, .  . . , 0 , 1 , 0 , .  . . ,0 ) ,  1 in position T 

The  n2 quantities t C r  are called fundamental  shift operators. The  coeficients 

are fu l ly  defined as Junctions ouer arc digraphs (earlier called the pattern 
calculusg). T h e  above matr ix  element relation and the arc digraphs deter- 
mane uniquely the D’-polynomials. It is the algebra of these fundamental 
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wL~ = (J ML(Q,Q’ ) .  
f2,dEWA 

In this relation, D x ( Z )  and CX(A) arc matrices of dimension Dim(X) given by 
tho Weyl dimension formula, and the coefiicients in this matrix relation are 
thc Maclaurin monomials ZA/,4!, Tlic following propertics offer but a glimpse 
at the important structural properties of these matrices, whose elements are 
tho polynomials 

D ( Z) (a, 
whose rows and columns are enumerated by the Gelfand-Tsetlin patterns (A) 
and (2,). 

3 .  Multiplication of D x ( Z )  matrices: 

D X ( X ) D X ( Y )  =r W X ( X Y ) ,  

for arbitrary matrices X and Y .  A full combinatorial proof of this relation 
can be given, which starts with the proof given in [Chen], arid then uses 
Pieri’s rule for multiplying certain of these polynomials. 

2. Multiplication of Cx(A)  matrices: 

where 

and the structure constants are given by the double inner product of 
Maclaurin polynomials [Italy]. 
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3. Matrix Schur fiinction: 

5. Relation to Scliur functions: 

6. Importance for physics: The matrices U x ( Z )  give all inequivalent, integer 
representations of GL(n, C) for Z E GL(n,, C). Thus, the matrices D x ( Z )  
also give all inequivalent unitary representations of U(n)  for Z E U(n) .  
Moreover, these matrices and their elements occur as state vectors for 
composite hysical s stems and have a wealth of properties for various 

tions. 
choices of t R e variab Y es Z. We will see some of this in the following sec- 

3 Skew Tableaus and Skew Gelfand-Tsetlin Patterns 

Sernistan,dard skew Youn lahlea,u: Let A, p E Par, with X i  2 pi, i = 1,2 ,  . . . n. 

shape A. The skew sh,upe X - p refers to the shape of the "staggered" rows of 
boxes that remain after deletin all the boxes of shape p from the shape A. As 
with a semistmdard Young-dyl  tableau, the boxes in the shape X - p are 
filled in with the integers 1,2,, , . , n with one integer per box such that the 
sequence in each row is weakly increasing and the sequence in each column is 
strictly increasing: 

This condition is denote B X 2 p, and means that the shape p "fits inside" the 

4 weakly increasing across each row 

4 stictly increasing down each column 
shape p 
removed 

Notations: 

1 A, - pn boxes J 

TxlP = set of all skew tableau of shape X - p ,  
Q = weight of a skew tableau = (q, , . . , an), ai = number of i 's , 
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T+(a) = H C ~  of nll skew tr-ibloau of slmpc X - 11 rrrid weight CY 

WA/,,(a) = set of all wcight,s in TA,,,(a), 
VVx,,, = tlet of r ~ l l  weights in 'Il'A//,, 

Kx/,((cr) E= multiplicity of weight a E WA/,~, 

ptrrbi tkms p, (T E Par,, satisfy 1, he bct.wc~;nnoss conditions: 

Two-rowcd prescntnt,ion: 

Skew G e l f h % -  'I'se2lzn pullems: Thc? na1Aon p 2 D rnwm tl-iatj the ptiir of 

PI 2 01 Z PZ 2 02 2 * * * Z pn 2 on 2 0- 

Fn-1 Pn 
on-I on . . .  0 1  0 2  

A skcw GT pattern of shape X - p  with p C_ A, is a sequence of n+ 3 partitions 
A, T ,  . . , I / ,  /it be inning with X and eridin with p, all of which belong to Pam 

shape X - p, may be presented as a pardelogram with n + 1 rows: 
and which satis f y the conditions X &I 7 3 . e 2 11 2 p. A skew GT pattern a! 

, X z J T ~ . . * ~ V z J / - L .  

A, X2 * * -  An 
T I  r2 * r, 

V] u2 * ' .  1'1 1 i 141 1 4  * * * i-Ln 

The placemcnt of the entries i n  this c~mfiguration is intended to be suggestive 
of 1,he belweenness relations. 

Notations: 
Gx/, = set of all skew GT patterns of shape X - p, 
a = weight of a skew GT pattcrn = (01 ,  , . . , a,) 

Gx/,(a) = set of all skew GT patkerns of shape X - ,u and weight a , 
Wx/,l(a) = set of all weights in Gx/,(a), 
WX/, = set of all weights in Gxi,, 
K,/,(a) = multiplicity of weight a E Wx/,. 

= (14 - IPl, ' * ' , 171 - l4,I4 - 14>, 

These notations for wei hts anticipate that these sets are identical to  those 

ah ,  we have the bijection between the sets of semistandard skew tableaux 
and *'i s cew GT patterns of the same weight, 

defined for semistandm c f  skew tableau. 
l 

as given by the following rules: 
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11 is the shape of the tableau obtained by removing rill 2’s; 
p is thc shnpe of the tableau olitaincd by removing all 1’s; 

mverse 17Lk The slrew tableau is ol-)t,ained from the skew GT pattern by the 
rule 

insert 1’s in the shape I /  - p; followed by 2’s in the shape K.  - v ;  
a ; followed by n’s in the shape A - r. 

Exumple: X = (G530), p = (321 0) : 

( 3 5 3 0  
6 4 2 0  

5 3 2 0  
5 3 1 0  

3 2 1 0  

The bijection described above e x h d s ,  of course to the full  sets of semi- 
standard skew Young tableaux and skew Gelfand-f’setlin patterns of shape 
A - p :  

BI J ECTIQN 
%1L - %P, 

I t  is somewhat surprising that the sct of skew GT patterns G A / ~  can all be 
realized as ordinary triangular GT patternsg in 2n rows corresponding to parti- 
tions (A On) ,  X E P,,, with further specialization of the patterns, as we describe 
in this section. 
4.1 Relation between Skew GT Patterns and GT Patterns 

pattern: 
We introduce the more detailed mi,j notation as follows for a skew GT 

[ Xlcl 
m 

in which 



Corisider next the triangulnr GTpattern with 2n rows arid ~inrtitian (A, On), A E 
Pur, as follows: 

where ('I) is an ordinary triangular GT pattern with n rows. Notice that in this 

[ m ] and notation p is included both as the bottom row in the skew pattern 
tls the top row in (7). We then haw: the one-to-one correspondence between 
patterns in which we choose the entries Zi,j in ( y )  to be maximal, that is, 

V P  

lz,j = pi, j = i, 2, , . , n - 1; i == 1,2, . . . , n - 1. 

max 

'I'lle following D(' O")-polynomials, which are labeled by a pair of Gelfand- 
Tsetlin pat,tern having partition (A, O n ) ,  A E Par,, are fully defined, as dis- 
cussed in Section 2.2: 

D 

We now define the following pol nornials, which are labeled by double skew 
GT patterns, M the  special case o ? these polynomials corresponding to choos- 
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( ( vi;$ ) 

with  wcigfits of lower and upper l~att~erns given by 

y == ( / A ,  a) ,  cr = weight of [ ] 7 

y’ = ( C L , ~ ’ ) ,  d = weight of [9]. 
These polynomials tJhen haw the following properties, as expressed in terms 

of the matrices of dimcnsion 

DimDX/l”(Z) =: K(X/p,  a) ,  
aEWX/p 

which are obtained by using the lower pa1,terens to label rows and the 

upper patterns [ 7; ] to label columns: 

3 .  Multiplication of DX/P(Z) matrices: 

for arbitrary matrices X and Y .  This multiplication froperty is a di- 
rect consequence of the definition of these matrices, t e multiplication 
property for ordinary DX(Z)  matxices, and the fact that the restriction 
to maximal labels propagates through products. 

2. Matsix skew Schur €unction: 

3. Diagonal properties: 
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5 Words of Semistandard Skew Tableau and Skew GT 
Pat terns 

The not,ion oE tl word of a words of scrnist,andard skew t,ablcau and skew 
G7’ ~mt,t,crns is equivalcnt to that of weight, but the forrr~er is more closely 
related t,o the noljon of a lat,tice permutat,ion. The eniirneration of lattice 
pcrmut,at,ions of a cert,nin type gives the Lii,t,lewood-Richardson numbers c ~ , ~ ,  
which, in turn, among other occurrences, are important quantitks for reducing 
Kronecker products of irreducible representations of U ( n ) .  In this section, we 
give some bask dcfinjtjons and propcrtjes of words, as follows: 

be a sequence of non-negative integers with Icy1 = k .  The weakly increasing 
seyucnce defined by 

x 

The standard € o m  of a sequence of repeated 3 ’ 5 , .  . . , d s  : Let a = (a, ,  a2, . . . , a,) 

(1,2,. . . , n)“ = 1“12”2 . . . n”n 

is called the ,stan,dar.d form or type of any scquence 

A k  = U , l Q . .  . U k ,  CX1 +2CXz + +n(Xn c k 

cor11,aining ai1 l’s, a2 2‘s,. . , , ai, n’s. We denote the set, of all such sequences 
by &(a), which tlien has cardinality given by the multinomial coefficient: 

5.1 Word of a Sem,istandard Skew Tableau of Shape X - p 

Row i of the semistmdard skew tableau 

cL1 int@Frs -+ weakly increasing across each row 
xZ -wr shape p 

F d z  A, - pn I integers 
stictly increasing down each column 

is filled out as follows: 
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Tlie word of this sernist.endurd skew tt~bleni~ of weight, Q is t h  seqircncc &fined 
t)Y 

( 1 )  (2) (n)  
L / P ( 4  = Lx,,lLx/p * * ' k / , d  

where the weight CL is givcn by 

cv ( C V ,  7 0 2 ,  + - 7  an)r = i1,j 4- 12,j + . , 4- In ,3 ,  j = I , 2 , .  . I , n,. 

This word sequence is of type (1,2,. . . , n)*. The n2 non-negative integers 

c = (hj)lSi,jSn 

appearing in  this word must, of course, fillfill the rules for a semistmdard skew 
tableau. 

5.2 Word of a Skew Gelfand- Xsetlin Pattern of Sh,ape X - p 

Consider again the skew GT pattern 

A1 A2 An 

L J 

inlll rn,2,1 mn,t 
PI P2 * * '  Pn 

which has weight 

Q = (1m.1 I - lmzl- lrn~l,. 9 > Imnl - 1mn-1 I). 
The i-th left, diagonal (i = 1,2,. . . , n) of this pattern is mapped to the se- 
quence that is, 

mi,0 

where the non-negative integers li ,j  = mi,j - rni,j-], j = 1 ,2 , .  . . , n, are read as 
successive differences dong this diagonal. This sequence of type (1,2, . . . , n)a 
defines the word of this skew pattern: 
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LA,,, = set of a11 words of semistandard skew tableaux or skew CT 
patterns of s l i~ye  X - p. 

6 Lattice Permutations and Littlewood-Richardson Num- 
bers 

The properties of the  Lit,181ewood-Richardson numbers c;. are basic to the 
reduction of Kronecker products of DA-polynomials and to the reduction of 
skew DX~~L-polynomials, which is one of the reasons we study lhem. Their 
rclation to lattice permutations is one such fundamental property. First,, we 
dcfine a lattice permutation. 
6.1 l,attJice 13ermutations A word 

Ak = U . I Q ~ . .  . " j , .  . ak E A~(cI) 

of type (1,2, . . . , n)a is a lattice permutation if and only i€  Rule L as follows 
is true: 

Rule I ,  : In each left €actor A '  = aIu2. . . a j ,  1 5 j 5 I C ,  of Ak 
the number oi its is grcater than or equal to the number o€ i + 1's 

I I 

It  follows from ijhis rule that the sequence a is a partition,which we hence- 

From now on, we develo all further results in the language of skew Gelfand- 
forth denote by v. 

Tsetlin patAerns , althoug E all results could be rephrased in the language of 
semistand ard skew t ableau. 

following sets: 
Notations:Let A, p, v E Par, with p,v  C A, 1x1 = IpJ + ( V I .  Define the 

G A / ~ ( v )  = {subset of Gxlcl of weight v } , 
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We shall not solve Lhis problem here, but we can find rz subset of G A / ~ ( V )  
that, contains IL&, and this narrows considerably the problem. For this, we 
make the €allowing lJwo observations: 
Observation 1: A skew GT pattern can be split by the minor diagonal of the 
parallclogram into two triangular pa,tterns as follows: 

The pattern (2,) is a normal triangular GT pattern with n rows in which mi,j = 

mi,j, i == 1 , 2 , .  , . , n ; j  = 1 ,2 , .  , . , i. The pattern (T') is rz normal inverted 
triangular GT pattern with n rows in which 

m'! 2,3 . := m n.-i+i,a-j,.j = 1,2,. , . ,n; i = 1 , 2 , .  . . , j .  
I 

P L- (m:,nrma,n, * * rmn,n)* 

Of course, the entries an these two t r iangdar  patterns atre constrained b y  the 
betweenness relations lor the full skew pattern. 

Observation 2: For word of a skew GT pattern to be a lattice permutation, it 

16 



I n  order !,hat this word be a lalticc gcrrriut,tit~ion, the following conditions are 
ncccssslry : 

I,(') - ni1qT3 I - e 21132111J can have no entries to thc Icft of l L 1 + l ;  hence, 

LcL = nlz*" - + 2l2q2 lL2J can have no entries to the left of 2E2,2; hence, 

X / / J  - 
h,n = h J I - 1  = l l , 2  = 0 

12,n =z 12,n-I = 12,3 0 

= ria*r4 . . 21*3211aJ can have no entries to the left oi  z ' ~ ~ ~ ;  hence, 
V c l  

4,n = 4,n-1 = h,t+l  = 0 

L$L = rtnvn - . - 2'"~~ llnil can have no entries to the left of rtntn;  hence, 
no condition 

This collection of conditions 

l z j  = 0, equivalently, mb,,-l = m:,J = i + 1, i + 2, + - , n; i = 1,2 ,  . , n - 1 

are just the conditions that the pattern (A,) be maximal, so that 

The word of this special skew GT pattern is 

This result can be put in better form: The information is fully encoded 
- , A,) in the inverted pattern (y) and the boundary right diagonal (AI, Xz, 
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where the 
, .  

ra,j ma-.p+-l,n-j+1 - m,-3,n-3, J = a , %  - 1,.  . . ,1, 

arc the successive difkxncc between the entries along the diagonal 
Thc weight of a modified Gelfand-Tselin pattern is defined by 

in which ai denotes the number of i’s that appear in the word LtAk).  Thus, 
the word L(”2)  is of type (1,2,. . . , r ~ ) ~ .  

Given p , A  E Purn with ,u 5 A, the entries in a modified Gelfand-Tsetlin 
patterns satisfy all the standard betweenness relations, and the presence of 8 
serves only to fill out the triangular array, and be a reminder that XI may be 
as large as one pleases. 

Notations: 

MILA,,, == {set of words L(’;) I m runs over all values 

1 for which is a modified GT pattern 
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8 I-11 iJ2 
A1 ml,I 

A2 

word 1AI-Pl 2A2-n(1,1 I m l , l - P 2  

word = lat2tice permutation if arid only if XI - p~ 2 A 2  - ~ I , I .  

Gordan series 
Rscall the familiar angular momen1,um addition rule as given by the Clebsch- 

for which p, = ( 2 5  0 ) ,  v = ( 2 j 2 0 ) ,  X = ( j l  -i- j 2  + j , j l  + j 2  - j ) .  The unique 
modified GT pattern of weight v = (2 j20)  is 

,.-+ word 1 j z - j 1 + j  2Q 1 j 1 + 3 2 - 1  12j2 
0 3 1  0 

j l  + j 2  -- j 
j l  + j 2  + j j l  + j 2  - .i 

Thus the values of the total angular momentum j are ezactlg those for which 
the C?.T pattern satisfies betwcenness, each such j yielding the same lattice 
permutation of weight (2j2 0). We conclude: 

( j l + t j 2 + i j l + j 2 - - j )  - l , e a c h j = j I - j 2 , J 1  - j 2 + 1 , . . . , j i + j 2 ;  
0 ) m Z  0) 0, otherwise 

n=3 
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0 4 2 0  
7 4 0  1' 7 2 2 1 2 r l r 2  3 2 (latt,ice) 

6 2  
3 

Numerical cxilmplc 2: p = (2 ,2,2) ,1 /  = (5,4, l ) , X  = (7,6,3). Thcre is one 
modified GT pa,t,terns of type ( I ,  2, 3)(59491) == l5  24 3l : 

3 
(763)  Therefore: c(2 2),(5 4 ,  == 1. 

I t  is trac1,able l,o carry the above forward and derive necessary and sufficient 
conditions that a patimn in the set of modified GT patterns corresponds to a 
lattice permutation of given weight. Thjs is important for the theory of tensor 
operators in U ( n ) .  

The 13-polynomials corresponding to modified GT patterns can also be 
given, since they occur as specializations of the general polynomials discussed 
in Section : 
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We hnvc riot yet, worlwd out thc propcrties of thcsc polynomials 1altc:led by 
pairs of nmdified Gelftmd-Tsellin patterns. 
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